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Abstract
Fluorogenic RNA aptamers are in vitro-selected RNA molecules capable of binding to specific fluorophores, sig-
nificantly increasing their intrinsic fluorescence. Over the past decade, the color palette of fluorescent RNA apta-
mers has greatly expanded. The emergence and development of these fluorogenic RNA aptamers has introduced a
powerful approach for visualizing RNA localization and transport with high spatiotemporal resolution in live cells.
To date, a variety of tertiary structures of fluorogenic RNA aptamers have been determined using X-ray crystal-
lography or NMR spectroscopy. Many of these fluorogenic RNA aptamers feature base quadruples or base triples in
their fluorophore-binding sites. This review summarizes the structure-based investigations of fluorogenic RNA
aptamers, with a focus on their overall folds, ligand-binding pockets and fluorescence activation mechanisms.
Additionally, the exploration of how structures guide rational optimization to enhance RNA visualization techniques
is discussed.
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Introduction
RNA is one of the most fundamental biomacromolecules in life and
plays a crucial role in diverse biological processes, such as genetic
information translation, gene expression regulation, and mainte-
nance of cell functionality [1‒4]. The visualization of RNA
localization and dynamics with high spatial and temporal resolution
is essential for investigating their functions, mechanisms and
interactions in biology. Fluorescent proteins, especially green
fluorescent protein (GFP), have revolutionized the spatiotemporal
localization of proteins and the investigation of protein interactions
both in vivo and in vitro [5‒8]. However, intrinsic fluorescent RNAs
comparable to GFP have not been identified until now. Current
techniques used for the dynamic detection of RNA molecules
include fluorescence in situ hybridization (FISH) [9,10], molecular
behavior technology [11], and RNA hairpin methods [12‒18]. While
effective, FISH requires cell fixation and cannot be used for live-cell
imaging [9,10]. Molecular behavior technology allows spatiotem-
poral imaging of RNA molecules in living cells but is limited by
false-positive signals [11]. Alternatively, RNAs of interest can be
labelled with naturally occurring RNA hairpins along with their
specific binding proteins (e.g., MS2-MCP [12], PP7-PCP [14], λN22-
boxB [15] and gRNA-dCas [16‒18]) fused to fluorescent proteins.

Unfortunately, this technique suffers from the high background
fluorescence of unbound fluorescent proteins. Recently, RNA-based
fluorogenic aptamers have been used for advanced live-cell RNA
imaging [19‒28]. These fluorogenic RNA aptamers, which evolved
in vitro through Systematic Evolution of Ligands by Exponential
Enrichment (SELEX) technology, can specifically bind to their
cognate fluorogenic dyes and significantly activate their fluores-
cence [29‒32].

The Malachite Green aptamer was the first fluorescent RNA
aptamer, originally developed in 2003 [33,34]. In 2011, the Jaffrey
group synthesized a series of fluorogenic HBI analogues and
selected an RNA mimic of GFP called Spinach, marking a critical
breakthrough in the development of fluorogenic RNA aptamers
[35]. Since then, various approaches have been employed to fine-
tune and improve the properties of Spinach and its cognate
fluorophore molecules, leading to the identification of related
aptamers such as Broccoli [36], Corn [37], Beetroot [38], Chili [39]
and Squash [40] aptamers. In addition, multiple other fluorescent
RNA aptamer systems have been isolated and characterized,
including cyanine dye-based aptamers [41‒44], contact quench-
ing-based aptamers [45‒52], and spirolactonization-based aptamers
[53,54]. Recently, two novel fluorogenic aptamers, Pepper and
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Clivia, which feature high cellular brightness, good photostability
and multiple spectral properties, have been developed, greatly
enriching the available toolbox for RNA imaging [55‒57].

A structure-based investigation of these fluorescent RNA apta-
mers is essential for understanding the mechanisms of ligand
recognition and fluorescence activation, providing robust structural
guidance for their effective application both in vivo and in vitro. In
this review, we focus on the structural research progress of these
fluorescent RNA aptamers. By comparing the overall fold and
composition of the fluorophore binding sites among these fluoro-
genic RNA aptamers, we aim to elucidate the mechanisms under-
lying ligand recognition and fluorescence activation. Additionally,
we discuss how structural studies advance the rational optimization
of RNA aptamers and the modification of fluorophores with
improved photophysical properties, facilitating their application in
biosensing and bioimaging.

The Malachite Green aptamer
The malachite green (MG) aptamer was the first fluorescent RNA
aptamer, which was originally isolated by Wilson et al. [33] in 1999
through in vitro selection for its use in laser-assisted cleavage and
inactivation of RNA transcripts. In 2003, Tsien et al. [34] reported
that the MG aptamer not only selectively binds to the triphenyl-
methane dye MG but also switches on its fluorescence approxi-
mately 2400-fold. Subsequent characterization of the MG aptamer
demonstrated that the aptamer has a greater affinity for the rigid
planar analogue tetramethylrosamine (TMR; Figure 1A), with a
dissociation constant Kd of 40 nM, than for the nonplanar and
rotationally mobile MG (800 nM) [58].

The crystal structure of the MG aptamer in complex with TMR
was first determined byWilson’s group in 2000, with a resolution of
2.8 Å [58]. Dieckmann’s group subsequently utilized NMR spectro-
scopy to solve the tertiary structure of the MG aptamer bound to MG
[59,60]. In the following description, we discuss the crystal
structure of the MG aptamer in complex with TMR (PDB: 1F1T),
which adopts a rod-like compact helical scaffold (‘I-shape’) [58‒60].
Stems P1 and P2 exhibit coaxial stacking mediated by junctional
segments, and the ligand-binding pocket is positioned at the center
of the whole structure (Figure 1B,C). A base quadruple (G24-G29-
A31-C7) and a Watson-Crick base pair (C28-G8) constitute the floor
and ceiling of the binding pocket and sandwich the ligand TMR on
both sides (Figure 1D,E). Additionally, two base triples, C10-G23-
A27 and U11-A22-A26, form the top of the binding pocket and do
not interact directly with the bound ligand (Figure 1B,C). On the
right side of the ligand-binding pocket, the base A30 stacks directly
against the phenyl ring of TMR and is further stabilized by its
stacking with the base A9 (Figure 1E).

Notably, the solution structures of the aptamer in complex with
TMR and MG revealed minor differences in the stacking arrange-
ment within the ligand-binding site [58,59]. Compared with TMR,
which adopts a planar orientation, MG is bound to the aptamer in a
slightly twisted conformation, resulting in the loss of stacking
interactions between the dimethylaniline ring of MG and RNA
[58,59]. These structural differences are consistent with the reduced
stability and affinity of the MG-RNA complex.

To date, the MG aptamer has been developed as a fluorescent
biosensor for the detection of small molecules and engineered as a
split fluorescent probe for nucleic acid detection [61,62]. However,

Figure 1. Structural topology and TMR-binding pocket of the malachite green (MG) aptamer (A) Chemical structure of TMR. (B,C) Schematic
and cartoon representation of the MG aptamer based on the tertiary structure of the MG aptamer in complex with the ligand TMR. The TMR is
shown in balls in panel (C). (D) Surface representation of the binding pocket of the MG aptamer with the ligand TMR shown as sticks. (E) Stack
representation of the TMR binding pocket of the MG aptamer. The TMR is sandwiched between two bases above (C28-G8) and four bases below
(G24-G29-A31-C7) while being surrounded by A9, A30, and U25 on both sides. Panels (B‒E) are depicted on the basis of PDB 1F1T.
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the widespread application of MG in cellular imaging is limited by
its cell toxicity, which is induced by the generation of free radicals
upon excitation [63]. Nevertheless, the MG aptamer has introduced
potential for the development of genetically encoded fluorescent
RNA aptamers with high affinity and fluorescence brightness,
offering promising applications for various studies.

HBI Analogues with Spinach and Related Aptamers
In 2011, the Jaffrey group developed RNA mimics of GFP, called
Spinach, that bind to and activate the fluorescence of [(Z)-4-(3,5-
difluoro-4-hydroxybenzylidene)-1,2-dimethyl-1H-imidazol-5(4H)-
one] (DFHBI; Figure 2A) [35]. DFHBI is a small-molecule mimic of
the intrinsic chromophore of GFP, known as 4-hydroxybenzylidene
imidazolinone (HBI). Like HBI, DFHBI has low or no fluorescence
but exhibits strong green fluorescence upon binding to Spinach both
in vitro and in living cells. Importantly, DFHBI has no cytotoxicity or
phototoxicity. Furthermore, the phenolate form of the fluorophore

has a high extinction coefficient and quantum yield, making it an
excellent choice for identifying fluorogenic RNA aptamers that bind
to and switch on its fluorescence [8,35].

The crystal structure of the Spinach in complex with DFHBI (PDB:
4TS0) reveals a long coaxial helical stack composed of three stems
(P1, P2 and P3) connected by two irregular junctions (J1/2 and J2/3)
(Figure 2B,C) [64,65]. The J2/3 junction organizes a three-tetrad
quadruplex consisting of two G-quartets (T1 and T2) stacked above
a mixed-base tetrad (T3), which is stabilized by two potassium ions
(Figure 2B,C). In the DFHBI-binding pocket, the bottom layer is
formed by G26 and G65 of the top G-quartet (T1), whereas the top
layer comprises the U32-A64-U61 base triple (Figure 2D). This
precise arrangement effectively constrains the imidazolone group
and phenyl rings of the fluorophore, promoting a coplanar
conformation. The N3 atom and phenolic oxygen of DFHBI form
hydrogen bonds with the ribose 2′-OH of G26 and A64, respectively
(Figure 2D). Additionally, the unpaired G31 residue on the side of

Figure 2. Structural topology and DFHBI-binding pocket of the Spinach aptamer (A) Chemical structure of DFHBI. (B) Close-up view of the
schematic secondary structure of the Spinach aptamer with emphasis on the junction region J2/3, stem P2 and stem P3. The color coding of the
sequence is the same as that of the tertiary structure in panel (C). (C) Cartoon representation of the tertiary structure of Spinach aptamer with the
bound ligand DFHBI shown in balls. (D) Stack representation of the binding pocket of Spinach aptamer with the bound ligand DFHBI. The ligand
DFHBI intercalates into the ligand-binding pocket, with the bottom layer formed by G26 and G65 and the top layer comprising the U32-A64-U61
base triple. Several K+ ions (M1, M2 and M3) and water molecules have been identified to participate in the DFHBI-binding pocket of the Spinach
aptamer. (E) Chemical structures of DFHBI-1T, DFHO, DFAME, DMHBI+ and DMHBO+. Panels (B‒E) are depicted on the basis of PDB 4TS0.
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the DFHBI-binding pocket forms hydrogen bonding interactions
with the carbonyl oxygen of the ligand (Figure 2D). Notably, several
K+ ions (M1 and M2) and water molecules also participate in the
DFHBI-binding pocket of the Spinach aptamer. M2 is located on
the side of the ligand and forms one hydrogen bond with the
phenolic oxygen of DFHBI (Figure 2D). In addition, coordination
interactions are established between the fluorine atoms of DFHBI
and water.

Owing to the cell permeability, noncytotoxicity and nonphoto-
toxicity of DFHBI, Spinach has been successfully utilized for tagging
and imaging RNA expression, localization, and transport, as well as
for the design of genetically encoded sensors to detect and monitor
various essential metabolites in living systems [35,66‒72]. How-
ever, challenges have limited its broad application, such as the
misfolding tendency of Spinach aptamer and poor photostability
[66,73‒75]. On the basis of the crystal structure of the Spinach-
DFHBI complex, a miniaturized version called “Baby Spinach” (50
nucleotides) was generated with improved folding properties [73].
To further improve the thermal stability and folding of Spinach in
living cells, Spinach2 was developed through systematic mutagen-
esis [66]. Another enhanced version of Spinach, designated
iSpinach, was selected using random mutagenesis and high-
throughput screening by microfluidic-assisted in vitro compart-
mentalization, as reported by the Ryckelynck’s group [76]. The
overall structure and DFHBI-binding pocket of iSpinach are very
similar to those of the original Spinach aptamer [77]. A combination
of the standard SELEX procedure and directed evolution by
fluorescence-activated cell sorting (FACS) produces the broccoli
aptamer, which exhibits improved brightness and binds to [(Z)-4-
(3,5-difluoro-4-hydroxybenzylidene)-2methyl-1-(2,2,2-trifluor-
oethyl)-1H-imidazol-5(4H)-one] (DFHBI-1T; Figure 2E), a modified
version of DFHBI [36,78]. However, the Spinach-DFHBI complex
easily suffers photobleaching under continuous large-dose light
irradiation due to light-induced isomerization of DFHBI from the cis
to the trans form, which limits its wide use [74,75].

To increase the photostability and folding of fluorescent Spinach
and expand the spectral properties of related aptamers, the Jaffery
group designed a series of DFHBI analogue fluorophores. One of
these, 3,5-difluoro-4-hydroxybenzylidene imidazolinone-2-oxime
(DFHO), is based on the chromophore found in DsRed and other
red fluorescent proteins (Figure 2E). Compared with DFHBI, DFHO
contains an additional N-hydroxy imine substituent at the C2
position, which extends the π-conjugation of the fluorophore and
potentially improves RNA-mediated photostability. Through SELEX
technology, a novel RNA aptamer named Corn, which specifically
binds to and activates the yellow fluorescence of DFHO, was
developed [37]. Another fluorophore, 3,5-difluoro-4-hydroxyben-
zylidene imidazolinone-2-acrylate methyl (DFAME), was generated
by substituting the hydroxamic acid in DFHO with methyl acrylate
(Figure 2E) [38]. Compared with DFHO, DFAME contains a more
extended π-electron conjugation system, resulting in redshifted
fluorescence emission and excitation. Beetroot was developed to
bind to and induce the fluorescence of DFAME via SELEX [38]. On
the basis of the chemical structure of the HBI chromophore and
Spinach system scaffold, the Höbartner group performed structural-
guided truncation and sequence optimization of the 13-2 RNA
aptamer, a variant of Spinach that binds to dimethoxy-HBI (DMHBI;
Figure 2E), and identified a large Stokes shift fluorescent aptamer
named Chili [39]. Notably, the tertiary structures of Corn, Beetroot

and Chili RNA aptamers all contain G-quadruplex structural
elements in their core domains [79‒81]. Fine-tuning chromophores
through chemical modifications provides new insights into the
optimization of fluorescent RNA aptamers with improved photo-
physical properties.

In 2021, the Jaffrey’s laboratory successfully engineered a
naturally occurring well-folded adenine riboswitch into a fluores-
cent RNA aptamer named Squash. Squash binds to and strongly
activates the fluorescence of DFHBI-1T and DFHO [40]. The stable
overall scaffold and expanded ligand-binding pocket endow Squash
with improved intracellular folding and enhanced photostability,
offering potential in designing ratiometric biosensors for imaging
metabolite levels [40,82].

Cyanine Dye-based Fluorogenic RNA Aptamers
Thiazole orange TO is a canonical fluorophore with an asymmetric
cyanine skeletal structure that exhibits very low fluorescence in
aqueous solution. Typically, the fluorescence of TO is significantly
enhanced when the monomethine bridge connecting the two
heterocycles is rigid through nonspecific insertion into double-
stranded helical nucleic acids [83]. Adding substituents to the
benzothiazole heterocycle in TO significantly reduces its nonspecific
insertion. The derivative TO1-Biotin (Figure 3A) was synthesized
for screening high-affinity fluorescence turn-on aptamers, leading to
the successful selection of the Mango I RNA aptamer, which has a
23 nt core sequence (Figure 3B,C). Mango I has a high binding
affinity for TO1-Biotin, with a Kd of 3.6 nM and an approximately
1100-fold increase in fluorescence. This enables imaging of Mango I-
TO1-Biotin in microinjected live C. elegans, highlighting its potential
applications in the visualization of cellular RNAs [42].

The crystal structure of Mango I in complex with TO1-Biotin
(PDB: 5V3F) reveals a relatively simple RNA structure (Figure 3B,
C). A three-tiered G-quadruplex (T1, T2, and T3) containing three
antiparallel guanine residues (G16, G21, and G26 in the T3 plane) is
connected by a GAAA tetraloop to an A-form duplex [84]. The three
G-quadruplexes of Mango I are connected by six loops (A11, C12,
U15, A20, and A25), with A22 and T1 lying in the same plane,
resulting in T1 being extended into a pentagon. The interaction
between U15, A20, and A25 causes the RNA chain to flip at the top
of T3 and form the binding pocket for TO1-Biotin (Figure 3B‒D).
The stabilization of three consecutive stacked G-quadruplexes is
also facilitated by coordination with K+, which is a highly
characteristic feature of the G-quadruplex structural motif (Figure
3D). Additionally, the complete fluorescent group, comprising TO1,
biotin, and the PEG connectors that bind them together, extensively
interacts with RNA. In the complex structure of mango I/TO1-biotin,
TO1-Biotin adopts a cyclic conformation, with biotin and methyl-
quinoline heterocycles closely aligned (Figure 3D). The three
heterocycles of TO1-Biotin stack with three nucleotides in the
RNA loop: methylquinoline with A20, benzothiazole with A25, and
biotin with U15 (Figure 3D). Multiple hydrogen bonds stabilize the
binding of TO1-Biotin with RNA, including direct hydrogen bonds
(the ureido nitrogens of biotin with the 2′-OH of G10 and a
phosphate oxygen of U15) and water-mediated hydrogen bonds
(the carboxyl group of biotin and the phosphates of G10 and A11,
the carbonyl group of the head group and the phosphate of U15, and
the O2 carbonyl group of C12) [84].

After the emergence of the Mango I aptamer, Autour et al. [44]
employed a competitive ligand binding method combined with
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Figure 3. Structural topology and cyanine-based fluorophore-binding pocket of the Mango I aptamer and DIR2s aptamer (A) Chemical structure
of TO1-Biotin. (B) Fose-up view of the schematic secondary structure of the Mango I aptamer with emphasis on the three-tiered G-quadruplex (T1,
T2, T3) and several loops containing key bases involved in forming the binding pocket. The color is coded in panel (C). (C) Cartoon representation
of the tertiary structure of the Mango I aptamer with the ligand TO1-Biotin shown in balls. (D) Stack representation of the binding pocket of the
Mango I aptamer with the ligand TO1-Biotin. The loops (A11, C12, U15, A20, A25) stabilize each other through direct or water-mediated hydrogen
bonds to form a binding pocket, whereas the hydrogen bonds between G10 and U15 with the biotin portion of the ligand further stabilize the
binding of TO1-Biotin. (E) Chemical structure of TO3-Biotin. The omitted PEG linker and biotin moieties are the same as those of TO1-Biotin in
panel A. (F) Chemical structures of DIR-SO3 and OTB-SO3. (G,H) Tertiary structure and schematic secondary structure of the DIR2s aptamer with an
emphasis on the three stem loops. (I) Stack representation of the binding pocket of the DIR2s aptamer with the ligand OTB-SO3. Panels (B‒D) are
depicted on the basis of PDB 5V3F, and panels (G‒I) are depicted on the basis of PDB 6DB8.

112 Structure-based insights into fluorogenic RNA aptamers

Song et al. Acta Biochim Biophys Sin 2025



microfluidic selection to rescreen the original round 12 Mango I
library (R12). As a result, they successfully obtained three new
aptamers, namely, Mango II, III, and IV. Compared with the original
Mango I aptamer, these new variants exhibit significant improve-
ments in their fluorescence properties and reduced salt dependency.
Compared with Mango I, Mango II has a greater binding affinity for
TO1-Biotin, whereas Mango III and IV have slightly lower affinities.
Among these three novel aptamers, Mango II and IV have a
relatively high degree of sequence similarity with Mango I.
Structure-based investigations revealed that Mango II, III, and IV
also possess a G-quadruplex-tiered structure [85‒87]. TO3-Biotin, a
derivative of TO1-Biotin, has a similar affinity with Mango II, with a
Kd value of 3.1 nM, compared with the 8 nM Kd value for TO1-Biotin
[85] (Figure 3E).

Dimethylindole red (DIR) is another type of cyanine dye (Figure
3F) designed with a dimethylindole heterocycle and anionic
propylsulfonic acid substituents to reduce nonspecific binding with
nucleic acids. After 15 rounds of SELEX targeting DIR, the DIR-Apt1
aptamer was yielded [41]. The DIR2 aptamer, 57 nt in length,
enhances the fluorescence of the DIR dye and oxazole thiazole blue
(OTB) by 50-fold and 53-fold, respectively (Figure 3F–G). Owing to
their distinct spectral characteristics, DIR2s aptamer enable dual-
color excitation in the red (DIR) and blue (OTB) regions, facilitating
effective imaging of exogenous RNA both intra- and extracellularly
[43]. Sandip A. Shelke and colleagues utilized the Fab BL3-6
antibody as an RNA crystallization chaperone [88] to solve the
structure of the DIR2s aptamer in complex with OTB-SO3 (PDB:
6DB8) [89]. The crystal structure revealed a tuning fork-like fold
composed of two short stem loops and one long helix, with OTB-SO3

binding at the top terminal (Figure 3G,H). OTB-SO3 is encapsulated
in a stacking sandwich with the lower three purine bases (G39, A41
and A15) and the upper single-adenine nucleobase (A40), in which
the benzothiazolium and benzoxazole rings adopt a coplanar
conformation (Figure 3I). The propylsulfonate side chain forms
hydrogen bonds with G39 within the base triple (Figure 3I).
Notably, the DIR2 aptamer tends to dimerize, which affects its
broader application.

The Bright Green Pepper Aptamer
Recently, Yang and coworkers selected and characterized a novel
fluorogenic RNA aptamer termed Pepper, which can selectively
bind to and activate a new synthetic dye, [4-((2-hydroxyethyl)
(methyl)amino)-benzylidene]-cyanophenylacetonitrile (HBC) (Fig-
ure 4A), to emit strong green fluorescence [55]. Compared with
previously existing green fluorescent RNA aptamers, the Pepper-
HBC complex displays one order of magnitude greater cellular
brightness and one or two orders of magnitude greater fluorophore
affinity. These excellent photophysical properties make Pepper an
ideal tool for labelling and imaging diverse RNAs, enabling
investigations into their complex spatiotemporal dynamics and
biological functions within living cells [55].

The crystal structure of Pepper bound to HBC (PDB: 7EOH),
solved in 2021 [56], and the antibody-assisted cocrystallization
structure of Pepper in complex with HBC (PDB: 7SZU), solved in
2022 [90], both reveal that Pepper folds in a monomeric, non-G-
quadruplex tuning-fork-like helical scaffold, with three helices
(stem P1, P2 and P3) coaxially stacked, mediated by junctional
segments (J1/2, J2/1 and J3/2) (Figure 4B,C). In both structures, the
ligand-binding pocket is located in the middle of the structure with

the same nucleotide alignment (Figure 4B,C). For further discus-
sion, we will focus on one structure (PDB: 7EOH) to present the
structural details. As shown in Figure 4D, HBC is bound at the
intersection of stem P2 and the junctional regions J1/2 and J2/1,
capped by the bulge region J3/2. The surface representation of the
ligand-binding pocket shows that the two phenyl ring moieties of
HBC are positioned in a near-planar conformation, with the
hydroxyethyl moiety of HBC inserting inwardly into the binding
pocket (Figure 4E). Within the binding pocket, the top is formed by
the wobble base pair G10-U40 at the terminus of stem P2, whereas
the bottom is constituted by the non-G-quadruplex base quadruple
G41-U42-C43-U8 (Figure 4F). This arrangement provides a platform
to accommodate the bound ligand HBC. The terminal residues C33
in J3/2 and G9 in J1/2 tightly bracket the bound HBC molecule from
the side, further anchoring it within the binding pocket (Figure 4E).
Notably, the terminal hydroxyl group of HBC forms a hydrogen
bond with N7 of G41 at J2/1, which is important for maintaining the
high ligand specificity of the Pepper aptamer. One magnesium ion is
observed in the vicinity of the HBC-binding pocket, which forms
direct coordination bonds with N7 of G9, the phosphate between A6
and C7 and the phosphate between C7 and U8 (Figure 4E). The
structures of the Pepper aptamer bound to HBC analogues indicate
that modifications of HBC are feasible in the binding pocket,
opening possibilities for rational design of fluorophore molecules to
generate a broad spectral range and high quantum yield. In
summary, the comprehensive analysis of the overall structure of
the Pepper-HBC complex and binding pocket provides a robust
structural foundation for the enhanced and efficient utilization of
the Pepper aptamer both in vivo and in vitro.

Clivia Aptamer with Large Stokes Shift
Inspired by the work of RNA mimics of fluorescent proteins, a new
fluorophore termed 4-(N-(2-hydroxyethyl)(methyl))benzylidene-3-
methyl-2-styryl-3,5-dihydro-4H-imidazol-4-one (NBSI; Figure 5A)
was synthesized. The design of fluorophores is based on the
naturally occurring fluorophore in red fluorescent proteins, which
incorporates a dialkylamino group as the electron donor and a styryl
group to increase molecular flexibility and intramolecular charge
transfer [57]. NBSI exhibits negligible fluorescence in solution but
shows strong fluorescence upon binding to its cognate aptamer,
named Clivia. Compared with other fluorogenic RNA aptamers,
Clivia is a compact monomer consisting of only 36 nucleotides
(Figure 5B). The excellent photophysical characteristics of Clivia,
such as low background fluorescence, enhanced cellular brightness,
and large Stokes shifts (large spectral shifts between excitation and
emission peaks) up to 108 nm, provide advantages for the
simultaneous visualization and tracking of various RNA molecules
in live cells [57].

The complex structure of Clivia/NBSI (PDB: 8HZE) folds into a
single coaxial helix containing two duplexes, P1 and P2, which are
connected by the zipped junction region J1/2 (Figure 5B,C) [91].
Consecutive nucleotides from G9 to C14 within the internal loop J1/
2 extrude from the helix and interact with the minor groove of stem
P1 (Figure 5B,C). The surface representation shows that NBSI
adopts a near-planar conformation stabilized by the planar and
compact ligand-binding pocket at the central junction of the Clivia
aptamer structure (Figure 5D). The major aromatic moiety of NBSI
intercalates into the binding pocket, stacking between the upper
noncanonical base pair A15–G28 and the lower base triple U8–A29–
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C30 formed in the junction region J12, whereas the terminal (2-
hydroxyethyl) (methyl)amino group of NBSI protrudes outwards
from the binding pocket (Figure 5E). C14 and G9 on the left side of
the binding pocket further help anchor NBSI firmly in the binding
pocket. Two hydrated magnesium ions (M1 and M2) participate in
the tertiary folding of the NBSI-bound Clivia aptamer (Figure 5E).
M1 is located adjacent to the NBSI-binding pocket, where it
coordinates hydrogen bonds with the 2′-OH of U8 and the O6 of
G28 through hydrated water molecules (Figure 5E). Although Clivia
shows similar recognition to multiple NBSI-derived fluorophores
compared with NBSI, molecular docking analysis of the binding
pocket revealed that it employs a distinct fluorophore recognition

pattern compared with other fluorescent RNA aptamers. In vitro
fluorescence assays and live-cell imaging experiments in HEK293T
cells further confirmed the orthogonal utilization of Clivia/NBSI and
its derivatives in tracking diverse RNA molecules alongside other
fluorescent RNA aptamer systems [91]. Moreover, the robust
folding behavior of Clivia enables tailoring of the original Clivia
motif to a minimal Clivia fluorogenic module, facilitating the design
of multivalent Clivia fluorogenic aptamers containing tandem
arrays of NBSI binding pockets. Compared with single Clivia
fluorescent aptamers, these multivalent Clivia arrays display
increased fluorescence in the presence of a controlled concentration
of NBSI [91].

Figure 4. Structural topology and HBC-binding pocket of the Pepper aptamer (A) Chemical structure of HBC. (B) Cartoon representation of the
tertiary structure of the Pepper aptamer with the bound ligand HBC shown in balls (PDB: 7EOH). (C) Tertiary structure of the Pepper aptamer in
complex HBC solved with the assistance of an antibody (PDB:7SZU). (D) Schematic secondary structure of the Pepper aptamer on the basis of the
tertiary structure. The color coding of the sequence is the same as that in panel (B). (E) Surface representation of the binding pocket of the Pepper
aptamer with the ligand HBC shown as sticks. HBC intercalates into the ligand-binding pocket, resulting in stacking and burial of the chromophore.
(F) Sticks representation of the binding pocket of the Pepper aptamer with the ligand HBC. HBCs are encapsulated in a four-sided box arrangement.
The top and bottom faces are constituted by one noncanonical base pair, G10-U40, and the non-G-quadruplex base quadruple, G41-U42-C43-U8,
respectively. G9 and C33 and the linked phosphate between U40 and G41 comprise the faces on the left-hand and right-hand sides. Panels (D‒E)
are depicted on the basis of PDB 7EOH.
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Discussion
As mentioned above, many previously developed and structurally
characterized fluorogenic RNA aptamers employ G-quadruplex
tertiary folds, highlighting the importance of this structural motif for
fluorescence activation. Each square planar platform of the G-
quadruplex is formed by four noncanonical Hoogsteen hydrogen-
bonding guanine bases. These structures provide highly stable, flat,
hydrophobic platforms, which effectively restrain fluorophores into
rigid planar or near-planar conformations. Moreover, these G-
quadruplexes can accommodate other RNA functional groups,
enabling additional hydrogen bonding interactions with the
fluorophores to increase the affinity and selectivity of the
fluorogenic aptamer. However, previous studies have shown that
the formation of G-quadruplexes is specifically inhibited by
helicases in bacteria, yeast, and mammalian cells [92‒95]. The
misfolding tendency of G-quartet-containing aptamers has limited
their broad application in vivo.

Notably, fluorescent RNA aptamers also employ base quadruples
rather than G-quadruplexes, as exemplified by the MG aptamer and
Pepper aptamer [56,58]. In the recently reported fluorescent RNA
aptamer Clivia, which adopts a non-G-quadruplex structural fold,
three consecutive adenine-involved base triples are observed to
stabilize the overall architecture and constitute the planar stacking
platform for the ligand-binding pocket [57]. Similarly, A-minor base
triplets have also been identified in the tertiary complex structure of
the MG aptamer bound with TMR dye, suggesting that A-minor base

triplets are likely to play an important role in the folding and
stability of the RNA fluorogenic aptamer [58,59]. Investigations into
the tertiary structure of these fluorogenic RNA aptamers highlight
the inherent versatility of RNA molecules and demonstrate their
ability to effectively recognize and bind to diverse fluorophore
molecules.

The ideal characteristics of fluorescent RNA aptamers include but
are not limited to, being monomeric, stable, bright and multi-
colored, which enables them to be powerful tools for visualizing
RNA localization and transport in live cells. However, challenges
such as weak cell brightness, poor photostability and low folding
efficiency have hindered their widespread application
[35,36,40,66,76]. The optimization and improvement of RNA
aptamers have been achieved through structure-guided mutagen-
esis [66,73], conventional SELEX screening combined with FACS or
microfluidic-based technology [36,44,76,96], and sequence rescre-
ening from stable RNA scaffolds [40].

In addition, structural information on the ligand-binding pockets
of fluorescent RNA aptamers also enables rational optimization or
modifications of the cognate fluorophores, thereby expanding their
spectral diversity and facilitating their application in RNA imaging
[38,39,55,57,78]. For example, replacing the methyl substituent in
DFHBI by a trifluoroethyl substituent resulted in DFHBI-1T,
featuring redshifted excitation and emission spectra. Compared
with DFHBI, DFHBI-1T results in lower background fluorescence
and higher brightness when incubated with cells [78]. Similarly,

Figure 5. Structural topology and NBSI-binding pocket of the Clivia aptamer (A) Chemical structure of NBSI. (B) The schematic secondary
structure of the Clivia aptamer is depicted on the basis of the tertiary structure. The color coding of the sequence is the same as that in panel (C). (C)
Cartoon representation of the tertiary structure of the Clivia aptamer with the ligand NBSI shown in balls. NBSI is located at the center of the overall
structure and intercalates between two helical segments of the Clivia aptamer. (D) Surface representation of the binding pocket of the Clivia
aptamer with the ligand NBSI shown as sticks. (E) Stack representation of the binding pocket of the Clivia aptamer with the ligand NBSI. The planar
moiety of the ligand NBSI is surrounded by three groups of consecutive junction residues: U8-G9, C14-A15 and G28-A29-C30. A15 and G28 form
one base pair and stack above NBSI. U8, A29 and C30 form one base triple and stack below NBSI. G9 and C14 are stacked on each other and bracket
the side of the NBSI. Two fully hydrated Mg2+ ions (shown in balls) were identified around the NBSI-binding pocket. Panels (B‒E) are depicted in
PDB 8HZE.
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HBI fluorophores have been modified to produce a series of
derivatives with large Stokes shifts with yellow to red fluorescence
emission, which were further reselected against the Chili aptamer
[39]. The strategy yielded DMHBO+, which binds to the Chili
aptamer with low-nanomolar affinity. In addition, the substitution
of the hydroxamic acid in DFHO with methyl acrylate in DFAME+

results in redshifted emission, providing advantages for cellular
imaging [38]. Additionally, a series of HBC analogues have been
synthesized by tuning the aromatic π-structure or adjusting the
electron donor and acceptor capabilities, expanding the spectral
range of Pepper fluorescent RNA [55]. Similarly, NBSI, with a
typical chromophore structure, has been further tuned bymodifying
the fluorophore structure to generate a series of derivatives with a
broader range of fluorescence wavelengths, including a larger
Stokes shift [57].

With advancements in diverse bright, photostable, and cell-
permeable fluorophores and their corresponding fluorogenic RNA
aptamers, as well as the accumulation of comprehensive structural
information, the use of RNA molecules to track or image cellular
RNA and drug RNA will be easily achieved. This progress has been
significantly enhanced by the computer-aided rational design of
fluorophores, which allows for precise tuning of their properties to
meet specific experimental needs. The integration of advanced
fluorophore technology with RNA research has greatly accelerated
scientific discoveries and medical applications in RNA biology. In
addition, these advancements also support the development of
RNA-based therapeutics, offering new avenues for drug design and
delivery.
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